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Abstract itis critically important but challenging to estimate the amount of snow on the ground over large
areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with)
gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the
interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place.
Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show
that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth
based on distance and elevation can result in large errors. These errors are reduced substantially by our new
method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current
or previous water years. Our method results in significant improvement in SWE estimates over interpolation
techniques that do not consider snowfall, regardless of the number of stations used for the interpolation.
Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE
over the western United States that are comparable to existing estimates (which are based on the assimilation
of much more data). Our results also show that not honoring the constraint between SWE and snowfall when
blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

1. Introduction

Runoff production in cold regions is heavily influenced by snowmelt, and in some regions, such as the
semiarid western Conterminous United States (ConUS), snowmelt is the most important contribution to
water resources [e.g., Bowling et al., 2003; Bales et al., 2006]. In these regions, it is particularly important
to quantify the amount of snow on the ground. For example, in the western ConUS, water supply forecasts
are heavily reliant on correlations between river flows and snow water equivalent (SWE) measurements at
Snow Telemetry (SNOTEL) stations [Serreze et al., 1999]. These correlations are useful, but gridded esti-
mates of SWE or snow depth are preferable for a variety of purposes including water balance studies or
model evaluation.

There is much uncertainty about using point measurements to improve gridded estimates of SWE or snow
depth because of differences in horizontal scale and uncertainties about the representativeness of the mea-
surements. For example, snow data at SNOTEL stations can be unrepresentative of surrounding areas [e.g.,
Molotch and Bales, 2006] because they are typically located at higher elevations and in areas that accumulate
deeper snowpacks than a majority of the area surrounding them. At the same time, other data sets (e.g., the
National Weather Service Cooperative Observer (COOP) data) are biased toward lower elevations because
they are typically collected in or near population centers [Brasnett, 1999] and so may underrepresent the
amount of snow in a given region.

Elevation, distance from a given station, and/or other factors related to topography, vegetation, or radiation
are commonly used to upscale point measurements of SWE over areas [e.g., Brasnett, 1999; Brown et al., 2003;
Lépez-Moreno and Nogués-Bravo, 2006; Fassnacht et al., 2003; Erxleben et al., 2002]. However, at larger scales
(tens to hundreds of kilometers), these factors do not always predict trends in SWE. For example, the wind-
ward sides of mountain ranges commonly receive more precipitation than the leeward sides [e.g., Daly
et al., 1994]. Because the amount of SWE on the ground is highly dependent on the amount of snow that fell
[Blanchet et al., 2009; Schirmer et al., 2011], a well-constrained estimate of snowfall is likely a better predictor
of snow on the ground, especially as it is the physical reason for the snow being there in the first place.

One way to incorporate information about precipitation while “interpolating” point measurements is to
combine them with model estimates of SWE, as is done for the National Operational Hydrologic Remote
Sensing Center’'s (NOHRSC) Snow Data Assimilation System (SNODAS) [Carroll et al., 2001] as well as for
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various short- and medium-range weather forecasting models (e.g., at the Canadian Meteorological Center
(CMCQ) [Brown and Brasnett, 2010] and the European Centre for Medium-Range Weather Forecasts (ECMWF)
[Drusch et al., 2004] and by various investigators [e.g., Raleigh and Lundquist, 2012; Guan et al., 2013].
Precipitation is accounted for in this combination of observations and model estimates because it is one of
the variables used to force the snow model.

However, the methodologies to blend observed and modeled SWE do not generally account for differences in
snowfall between points and grid boxes. For example, the interpolation method used at the CMC's daily snow
depth analysis for the entire Northern Hemisphere, which is widely used for land model evaluations [e.g., Niu
and Yang, 2007; Reichle et al., 201 1], relies on correlation functions of distance and elevation to relate grid box
SWE to point data, regardless of differences in the snowfall that occurred. SNODAS is nudged toward snow
observations using a Newtonian Relaxation Procedure if it is determined by an analyst that such nudging
is necessary [Barrett, 2003], though we are unable to obtain full details about this procedure in peer-reviewed
literature. Such interpolation and nudging do not honor the physical processes for snow being on the ground
in the first place and hence may result in mismatches between SWE and the precipitation that produced
the SWE.

In this study, we first compare how well the spatial patterns of SWE or snow depth at peak snow accumula-
tion at SNOTEL and COOP stations can be predicted using our new interpolation technique based on the
relationship between accumulated snowfall and SWE (or snow depth) versus four other interpolation
methods that do not consider differences in snowfall. Next, we demonstrate the use of our new technique
to produce daily gridded SWE estimates with high-quality gridded precipitation and temperature data from
the Parameter Regression on Independent Slopes Model (PRISM) [Daly et al., 1994] at 2.5 arc min resolution.
We place more of an emphasis on SWE than snow depth because SWE is the variable that is of most interest
hydrologically (e.g., for determining how much potential melt there can be).

2. Data and Methods

2.1. Observational Data

This study uses observations of SWE, snow depth, and precipitation at SNOTEL stations and observations of
snow depth and precipitation at COOP stations. SNOTEL stations are typically located at higher elevations in
remote mountainous sites. As such, they receive much more snowfall than COOP stations. For example, of the
555 SNOTEL and 473 COOP stations used in this study (see below), the 5th-95th percentiles of snowfall at the
SNOTEL sites ranged from 234 mm to 1557 mm, while at the COOP sites, they ranged from 11 mm to 364 mm
during Water Year (WY) 2008. Due to the remote location of many of the SNOTEL stations, measurements are
automatic. For COOP stations, measurements of snow depth and precipitation are manual, and there is typi-
cally no measurement of SWE.

To generate spatial maps of SWE (described below in section 2.3 and presented in section 3.4), this study also
uses daily gridded precipitation and temperature data from PRISM. PRISM generates gridded estimates of
precipitation and temperature using statistical relationships and coordinated rules to produce spatial maps
of precipitation and temperature [Daly et al., 1994, 2008]. It incorporates data from 13,000 stations for preci-
pitation and nearly 10,000 stations for maximum and minimum temperature across the ConUS [Daly et al.,
2008]. The basis for PRISM is a climate-elevation regression that varies spatially, but it also accounts for a vari-
ety of local factors affecting climate, such as rain shadow affects, temperature inversions, and the effects of
nearby water bodies on temperature and precipitation. PRISM is especially well suited for interpolating
climate data in physiographically complex landscapes [Daly et al., 2008].

SNOTEL and COORP sites are only retained if they have a snow accumulation period that lasts longer than
1day and if there is no missing precipitation data during the snow accumulation period. In addition, we
manually inspected all time series for all sites to remove obvious spurious data, mainly affecting the snow
depth data. This results in a limited number of stations being retained for analysis. For example, after all qual-
ity checks, 555 SNOTEL and 473 COOP stations (out of 622 and 12472 stations, respectively) are retained
across the western ConUS for WY 2008. These locations are shown in Figure 1. We do not apply quality control
to the PRISM data as there is already extensive quality control of the station data that is used in PRISM
[Daly et al., 2008].
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Figure 1. Locations and elevations of COOP and SNOTEL stations that are used in this study. Also shown are the 2° x 2° and
10° % 10° grid boxes used for the analysis in sections 3.2.

Following Knowles et al. [2006] and Huntington et al. [2004] who performed studies of trends in snowfall in the
western and eastern U.S., respectively, we compute snowfall at COOP stations as the precipitation totals on
days for which there was newly fallen snow. Similarly, at SNOTEL stations, it is computed as the precipitation
totals on days when there is a positive change in SWE. In general, Knowles et al. [2006] and Huntington et al.
[2004] show that this method partitions between rainfall and snowfall reasonably well in both the western
and eastern ConUS. We partition daily PRISM precipitation data into rainfall and snowfall using a daily
temperature threshold. The determination of this threshold and accounting for its uncertainty is discussed in
section 2.3 below.

2.2. Method for the Cross Validation of SWE,,,.x and D,,.x Predictions at SNOTEL and COOP Stations

To quantify the degree to which including information about accumulated snowfall can improve spatial esti-
mates of SWE and snow depth, we perform a cross-validation experiment where we compare how many
SNOTEL stations are needed to predict SWE at “unknown” stations for two different scales using snowfall
as a constraint versus only using distance and elevation. Our analysis focuses on a 2°x2° box and a
10°%x 10° box (having areas of approximately 150km x220km and 750km x 1100 km) in the Northern
Rockies. We focus on peak of winter SWE (SWE,,.,) and peak of winter snow depth (D,,,) as these quantities
capture the integrated effects of snowfall and ablation that occurs prior to the date of SWE,,,,x and Dyax-

To establish a baseline, this study uses four previous methods to estimate D,y and SWE,,, at the unknown
stations: inverse distance weighting of SWE measurements (referred to as idw), inverse distance weighting of
residuals of a hypsometric relationship (between SWE,,.x or Dyax and elevation; referred to as idw+h), ordin-
ary Kriging of residuals of this hypsometric relationship (referred to as krig+h), and optimal interpolation (Ol)
[Brasnett, 1999], a method for the interpolation of residuals from a background field of SWE, accounting for
both horizontal and vertical distances. The Ol method is currently used to combine modeled snow depths
with those measured at stations at both the CMC and ECMWEF, so it can be considered as the state of the
art. To maintain consistency with idw+h and krig+h, the background is determined from the regression
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between SWEax (or Dinax) With elevation (referred to as Ol+h). These methods are well known and have been
previously published [e.g., Brasnett, 1999; Erxleben et al., 2002; Fassnacht et al., 2003], but for convenience, the
mathematical details of these methods are provided in the supporting information.

Estimates of SWEax (Or Dmay) at unknown stations using these methods are then compared to estimates of
SWEax (OF Dinay), Using our new method: the interpolation of SWE, . (or Dynax), Normalized by accumulated
snowfall (in this study, “accumulated snowfall” refers to the snowfall that occurs from the last snow-free date
up until the time of peak of winter snow accumulation). Here we test two situations: (1) when SWE,,ay Or Dpmax
at unknown stations is predicted with SWE,,,.x of Dinax at known stations as well as accumulated snowfall for
the current year and (2) when SWE,x or Dax at unknown stations is predicted with SWE, 5 or Dyayx at
known stations as well as a climatology of accumulated snowfall. For our first method (called krig+S),
SWE ax (O Diax) divided by accumulated snowfall is computed at each known station; these values are
interpolated to the unknown stations using ordinary Kriging, and these interpolated values are multiplied
by accumulated snowfall at those unknown stations to compute SWE, 4, or Dyax. For our second method
(called krig+cS), SWEmax (or Dimax) divided by the climatological average of accumulated snowfall is computed
at each known station; these values are interpolated to the unknown stations, and the interpolated values are
multiplied by the climatological average of accumulated snowfall at those unknown stations to compute
SWE nax O Dmax-

In this study, the period of climatology was WY 2005-2007. We used this short climatology period because
increasing the number of years would increase the number of stations with missing data (which was
especially an issue for the COOP data). In addition, we found that we only needed a few years to adequately
determine climatological differences between different locations. For example, the coefficient of determina-
tion (R?) between SWE .. for all SNOTEL stations for 2008 and the average SWE.x for the period 2005-2007
is 0.66. The R? only increases to 0.71 if the average SWE,,x for the period 1980-2007 is compared to the
SWE nax in 2008.

For each interpolation methodology, we performed a leave-p out cross validation whereby we used p stations
to generate predictions at the remaining stations. The number of predictor stations, p, ranges from five sta-
tions to the number of stations available minus 1. For each value of p, the predictor stations are also chosen
randomly 100 times to assess the error in the predictions at the remaining stations.

We only analyzed stations with data that meets the standards outlined in section 2.1 for all years of the
climatological period (2005-2007; as all of these data are used by our krig+cS method). This especially limits
the number of COOP stations that can be used because of the large amount of missing data at the COOP
stations. For the 10°x 10° grid box, 214 SNOTEL and 27 COOP stations are used in these analyses. For the
2°x 2° grid box, only 15 SNOTEL stations are used.

2.3. Method for Creating Gridded Estimates of SWE From SNOTEL Measurements

We then use our krig+S interpolation method to generate gridded estimates of SWE using PRISM precipitation
and temperature data and SNOTEL SWE data for the 10°x 10° box. We compute these SWE estimates on the
same grid as the original PRISM data, which has a 2.5 arc min resolution (approximately 2.6 x 3.75 km per grid
cell for our study domain) and a daily time step. Here SWE is divided by net accumulated snowfall, defined as
accumulated snowfall (measured at the SNOTEL stations) minus an estimate of cumulative ablation (from the
first date that snow is covering the ground to the analysis date). We include ablation here because after peak
SWE at higher elevations (as well as throughout the winter at lower elevations), the amount of snow on the
ground depends significantly on how much ablation occurs in addition to the amount of snowfall that occurs,
whereas above, we only consider peak SWE at SNOTEL stations, which is predicted well by accumulated snowfall
alone (see section 3.1 below). Then, as above, we interpolate (Krig) these values of SWE divided by net accumu-
lated snowfall to each grid cell in the 10°x 10° box and multiply the interpolated values by net accumulated
snowfall to find the resulting SWE estimates at each grid cell. For these tests, we only use the 214 (all available)
SNOTEL stations in the 10°x 10° box because the COOP stations do not record SWE.

The rules governing net accumulated snowfall (both accumulated snowfall and cumulative ablation) are
based on SNOTEL data. We consider precipitation to be rain or snow based on whether the mean daily tem-
perature is greater or less than +2°C. This threshold appears to be reasonable in the 10° x 10° box because the
fraction of days with precipitation at the SNOTEL stations that results in an increase in SWE is about half (48%)
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Figure 2. (a) Shows, in 1°C daily temperature increments, the fraction of relationship is shown by the green line

wet days (when precipitation >1 mm) that are associated with an in Figure 2b, which is a best fit regres-
increase in SWE at SNOTEL stations. The horizontal and vertical black lines  sjon of all the cumulative ablation ver-
show the temperatures corresponding with values of 0.25, 0.48, and sus cumulative degree day data pairs

0.65 (fractions of wet days) referred to in section 2.3. (b) The cumulative . .
) . across the entire network for the entire
ablation (represented as accumulated snowfall minus SWE) plotted
against the number of degree days above 0°C based on all the SNOTEL snow season. These rules are then
data in the 10° x 10° grid box in Figure 1. Each blue dot represents a daily ~ applied to both the SNOTEL and
measurement of accumulated snowfall minus SWE. The green line PRISM precipitation and temperature
shows a best fit regression for the data. The red lines show this function  4ita to estimate net accumulated
shifted by equal distances in the positive and negative x direction such

that the area between the curves captures 75% of the data points. snowfall for each day at each station

and each grid cell.

Given that there is considerable uncertainty in the relationships shown in Figures 2a and 2b, we perform a
“low snow” simulation and a “high snow” simulation to get a sense of uncertainty. For the low snow simula-
tion, the temperature threshold that defines whether precipitation on a given day is considered as rain or
snow is set to 0°C (resulting in less snowfall), and for the high snow simulation, it is set to +4°C (resulting
in more snowfall). Note that at 0°C, the SNOTEL data suggest that 65% of days with precipitation have an
associated increase in SWE, and at +4°C, 25% of days with precipitation have an associated increase in
SWE (Figure 2a). In addition, for the low snow simulation, cumulative ablation is modeled by the leftmost
red line in Figure 2b (resulting in more ablation at low temperatures), and for the high snow simulation, it
is modeled by the rightmost red line in Figure 2b (resulting in less ablation). Seventy-five percent of the data
points lie within the red lines in Figure 2b.

We then compare the resulting SWE maps with those from the National Operational Remote Sensing Center
(NOHRSC)'s Snow Data Assimilation System (SNODAS) [Carroll et al., 2001] product that assimilates snow
information from ground-based, airborne, and satellite platforms. While SNODAS is not the ground truth, it
still provides a useful benchmark for our comparison because of its wide use. The 30 arc sec SNODAS product
is resized to 2.5 arc min resolution using bilinear interpolation to match the resolution of the PRISM (and our
gridded SWE) data.

3. Results
3.1. The Spatial Consistency of SWE,,,,, and D,,,.x When Normalized by Snowfall

The SNOTEL and COOP data show substantial spatial variability of SWE, ., and D,ax (Figures 3a and 3b).
Considering all SNOTEL sites in the western ConUS, the interquatile range (i.e., the difference between
the 75th and 25th percentiles; denoted as Q75-Q25) of SWE,.x during the water year (WY) 2008 was
406 mm (Figure 3a), and the Q75-Q25 of Dy, values recorded at COOP sites during WY 2008 was 457 mm
(Figure 3b). This spatial variability makes it challenging to do the spatial interpolation using techniques
presented in previous publications (to be demonstrated in section 3.2).

At the same time, accumulated snowfall is a relatively strong predictor of SWE, ., and Dpay. For example, the
Q75-Q25 of the residuals on the regression of accumulated snowfall with SWE,x and Dpax shown in
Figures 3c and 3d are just 99 mm and 122 mm, respectively. Furthermore, normalizing SWE,ax and Dpayx
by the regressions in shown in Figures 3c and 3d reduces the spatial variability shown in Figures 3a and
3b. For example, the 75th percentile divided by the 25th percentile (denoted Q75/Q25) of SWE,,., values
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Figure 3. Scatterplots of WY 2008 values for all SNOTEL stations of (a) SWEax versus elevation, (c) SWE,ax Versus accu-
mulated snowfall (SF,cc), and (€) SWEax/SFacc Versus elevation. The results for all COOP stations are shown in (b) Dynax
versus elevation, (d) Dyax versus SFace, and (f) Dyax/f(SFacc) (Where f(SFcc) is the regression shown by the thick red line in
Figure 3d for all COOP stations). Figure 3c also shows the regression between SWE 55 versus SF . for all SNOTEL stations
(thin black dashed line). The thick black dashed lines in all panels show the 5th and 95th percentiles of the data (to be

consistent with subsequent figures) for each bin in abscissa. In Figures 3a, 3b, 3e, and 3f, the text shows the 25th and 75th
percentiles of the data set as a whole, while the 25th and 75th percentiles of the residuals on the regression between SF ¢
and SWE,ax/Dmax are shown in Figures 3c and 3d.

recorded at SNOTEL stations reduces from 2.1 (Figure 3a) to 1.2 when the values are divided by accumulated
snowfall (Figure 3e), and the Q75/Q25 of Dy,,ax Values recorded at COOP sites reduces from 3.3 (Figure 3b) to
1.5 (Figure 3f) when divided by the regression equation shown in Figure 3d.

This substantial reduction in scatter implies that it is easier to obtain spatially consistent estimates of the nor-
malized quantities (to be demonstrated in sections 3.2 and 3.3), despite the uncertainties in the data (e.g.,
gauge undercatch of snowfall). One note of caution is that SNOTEL and especially COOP measurements
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Figure 4. (a) The mean absolute error (in mm) between measured and
predicted values of SWE,y,ax at unknown SNOTEL stations (those where
SWEax are predicted from other stations) using the four previous
methods and our two new methods (krig+cS and krig+S), as a function of
the number of stations used to do the prediction within the 10° x 10° grid
box in Figure 1. (b) The corresponding results for the 2°x 2° grid box.

are probably mostly located in ideal flat
settings. Griinewald and Lehning [2015]
found that ideal, flat measurements
tend to overestimate SWE and snow
depth for close surroundings (up to
400m horizontal distance), though
Helbig et al. [2015] found that there is
much better agreement between flat
measurements and spatially averaged
snow depth for larger grid cells
(>1500m), such as those used in
this study.

3.2. Predicting Peak SWE at SNOTEL
Sites Using Multiple Interpolation
Techniques

Fewer stations are needed to produce
more accurate estimates of SWE,,.x
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Table 1. Error of Predictions of SWEmax and Dmax Compared  given knowledge of accumulated

. a
to Observations snowfall (i.e., krig+S), both at the larger

scale (10°x 10° box) and at the smaller
SWE max Drmax scale (2°x2° box) as compared with
the four previous methodologies that

SNOTEL COooP

idw 217.8 373.1
99 1701 2120 do not use accumulated snowfall
idw+h 222.1 387.9 (Figure 4 and column 1 of Table 1). At
krig+h 2252 386.1 both scales, the mean absolute error
krig+cS 823 200.5 (MAE), computed as the average of
krig+S 61.9 185.6

the absolute differences between

Column 1 shows the average MAE (in mm) between observed and observed values and those predicted
predicted SWE .« at the 214 SNOTEL stations in the 10°x 10° box for _ : _
the four previous methods (idw, Ol, idw+h, and krig+h) and our two by each of the six lnterpol.atlon'meth
new methods (krig+S and krig+cS). Column 2 shows the same quantities odologies at unknown stations, is gen-
but for predictions of Dyy,ax at 27 COOP stations in the 10° X 10° box. erally close to 10% of the average

SWE,,ax for our method (krig+S), while
for the previous methods, it is generally 25-40% of the average SWE .« (though Ol clearly performs better
than the other three methods). At the larger scales, using 22 stations to predict SWE,,, at the remaining sta-
tions, the average of MAE (232 mm) using the four previous methods is 4.8 times as large as that using our
method, and this ratio remains as large as 2.9 even when 200 stations are used as predictors (Figure 4a).
At the smaller scale, the ratio is even larger (e.g., 6.6 with 5 stations used as predictors and 6.0 with 14 stations
used as predictors) (Figure 4b). In short, at the scales that we examine, accumulated snowfall helps predict
SWEax at unknown stations far better than elevation does.

Although information about accumulated snowfall for the current water year at unknown sites is best, clima-
tological knowledge of accumulated snowfall can still be used to produce relatively accurate estimates
of SWEax. Fox example, the MAE of predictions versus measurements of SWE,,., at unknown stations using
our krig+cS method is generally less than half of those estimated using the four previous methods (Figure 4
and column 1 of Table 1). Additional tests indicate that for SNOTEL stations, SWE,ax can also be predicted
almost equally as well by climatological values of SWE,,, as by climatological values of accumulated snow-
fall. This is unsurprising given the recognized interannual consistency of patterns of SWE [e.g., Deems et al.,
2008; Schirmer et al., 2011].

3.3. Linking SNOTEL and COOP Measurements of Peak Snow Depth

Accumulated snowfall can also be used to link the SNOTEL and COOP data sets, which, as noted in section 2.1,
receive quite different amounts of snowfall. Therefore, COOP stations can be used as an independent test of
the robustness of the results obtained for SNOTEL stations. We perform exactly the same analysis on the
COOP data, with the only difference being that D,y is normalized by the regression between D, and accu-
mulated snowfall shown in Figure 3d instead of accumulated snowfall itself. This is because the regression
between Dp,.x and accumulated snowfall is slightly nonlinear (Figure 3d), which is largely a reflection of
the nonlinear relationship between snow depth and SWE (i.e,, snow depth does not increase linearly
with SWE).

The differences between SNOTEL and COOP sites can be seen for the 10°x 10° box in Figure 1 by comparing
the two columns of Table 1. In both cases (predicting SWE,,,, at SNOTEL sites or Dy, at COOP sites), both of
our krig+S and krig+cS methods perform best: for the SNOTEL SWE,., predictions, the MAE for unknown
stations for krig+cS is 133% of that computed for the krig+S method, while for the four previous methods, this
MAE ranges from 275 to 364% of that computed for the krig+S method. For the COOP Dy, predictions, the
MAE for unknown stations for krig+cS is 108% of that computed for the krig+S method, while for the four
previous methods, this MAE ranges from 201 to 222% of those computed for the krig+S method.

Accumulated snowfall is also useful for predicting peak of winter snow accumulation outside the range of
climatic conditions that are represented in each individual data set. For example, krig+S and krig+cS can bet-
ter predict COOP Dy,ax Using SNOTEL D« data or predict SNOTEL D,,,,x using COOP D, data compared
with the four previous methods. Figure 5 shows that using the same methodology as above (except that
the entire COOP data set is used to estimate the entire SNOTEL data set in the larger grid box, and vice versa),
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SNOTEL coop krig+S and krig+cS predict both a much

5000 | a) 3000 B) . . T more realistic median D, and a much
T : b smaller MAE between observed and
z 4000 - . ! € 2300 Lo predicted Dp,.y than the four previous
| . . .
€ 3000 | LT E 20007 E Q E methods. This is despite the fact that
5 i E || E1s00f | * L7 T the SNOTEL stations (typically located
r | T . . . .
o 2000 B : E S 000 ﬁ 1 ! ] in mountainous locations) have higher
000 T I s 1 ! 00| B 5 Drnax thfan the CQOP stations (typically
0 - - - ol 1 located in population centers, commonly
« S S < 9w « S = < 9 v away from the mountains). In each case,
§2°15% 5 §2°15% 5 :
= S22 = 29 g the krig+S method performs the best,
=R X g X 2 < §

followed by krig+cS. The four previous

Figure 5. Box plots showing the observed (obs) and predicted Dpax methods severely overestimate the
using four previous methods (idw, O, idw+h, and krig+h) and two new COOP Dpax (Figure 5b) and underesti-
methods (krig+cS and krig+S) at (a) SNOTEL stations (using all COOP data  mate the SNOTEL Dy, (Figure 5a).
only for regression in these methods) and (b) COOP stations (using all L .

SNOTEL data only for regression in these methods) in the 10°x 10° grid 3.4. Application to Gridded Data

box in Figure 1. In general, our krig+S method (using

only information from PRISM and

SNOTEL data and normalizing SWE by
net accumulated snowfall) generates SWE maps that are comparable to the SNODAS product, even though
it assimilates much less SWE data. This can be seen by comparing the peak of winter snow accumulation in
the SNODAS product versus using our krig+S method (Figure 6f and comparing Figure 6a with Figure 6b) with
R? between these maps being 0.79 and the mean absolute difference between the maps being 70 mm (or
35% of the average SWE in the SNODAS map). At high elevations, the differences between our map and
the SNODAS map are generally less than 20% of the SWE,,,,« value.

This level of agreement between the SWE maps generated using our krig+S method and the SNODAS maps
lasts for much of the winter. In fact, from the time that significant snow accumulation begins in mid-
November to the time of peak of winter snow accumulation in late March and April, RZ between the two maps
is generally about 0.8 (blue solid line in Figure 6l), and the mean absolute difference is less than one third of
the average SWE value (compare the blue solid lines in Figures 6j and 6k). Even though the high snow (or low
snow) simulation predicts generally more (or less) SWE than is suggested by the SNODAS data, the R*
between these simulations and the SNODAS map remains high through the winter, and the mean absolute
difference remains low (blue dotted lines in Figures 6j-6l).

For comparison, we also implemented the best performing of the previous methods (O/+H) as well at the
same resolution. Compared with krig+S, Ol+H generally results in more snow at lower elevations, though
the high elevations are predicted fairly well (compare Figures 6b and 6¢ with Figure 2a, and compare
Figure 6f with Figure 6g). Overall, the resulting spatial R? of Ol+H (with the SNODAS product) is similar to that
of krig+S (light blue line in Figure 6l), though OI/+H also has a much higher mean absolute difference with the
SNODAS map than krig+S (Figure 6k). Furthermore, Ol+H generally overestimates SWE compared to SNODAS
or krig+S, and the estimated SWE, at times, even exceeds accumulated snowfall, which is unrealistic (Figure 6j).
In contrast, the SWE estimates generated with krig+S increases fairly closely with accumulated snowfall for the
early part of the winter, consistent with the SNODAS estimates.

We also implemented the optimal interpolation (Ol) method using several other methods to obtain first
guess fields. For the first case (referred to as Ol (cyc) in Figure 6), it is implemented similar to Brasnett
[1999], where the previous day’s SWE, plus daily snowfall minus daily ablation, is used as an initial first guess
for each day. Second, it is implemented using net accumulated snowfall as a first guess field for each day
(referred to as O/+S in Figure 6). The difference is that for the first case, any alterations that were made during
the previous day due to interpolation are preserved and carry through to subsequent days. For the second
case, the effects of any interpolation do not carry over from day to day. The first case is analogous to how
it is used to assimilate snow data for various data assimilation systems, and the second case makes its imple-
mentation very similar to krig+S (except when Ol is used to distribute the residuals instead of Kriging). For the
first case, estimated SWE diverges substantially from the SNODAS data, and this divergence gets worse
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Figure 6. (a—e) Spatial maps of peak of winter SWE (computed, for each pixel, as the maximum of the daily SWE maps during WY 2008 for the 10°x 10° grid box
for the SNODAS data), for krig+S (modified to use net accumulated snowfall in the normalization) and for optimal interpolation using just elevation information
as above (Ol+H), using the previous interpolated SWE value as a first guess [O/ (cyc)], and using net accumulated snowfall as a first guess (O/+S). (f-i) The ratio of the
maps in Figures 6b-6e to the map in Figure 6a. (j) The spatial average SWE in the 10° X 10° grid box through the course of the snow season for all data shown in
Figures 6a-6e as well as the area-averaged accumulated snowfall on each day (monotonically increasing dashed black line). (k) The seasonal evolution of the mean
absolute difference (MAD) between krig—S, Ol+H, Ol (cyc), and Ol+S versus the SNODAS data. () The seasonal evolution of the R? value between krig—S, Ol+H, Ol (cyc),
and O/+S versus the SNODAS data.

through the course of the winter (red lines in Figures 6j-6l) as the effects of the interpolation (whose spatial
patterns are inconsistent with those of snowfall) add up from day to day. Basically, it results in far too much
snow being added to many areas (as well as not enough snow being added to others; Figures 6d and 6h). On
average, these SWE estimates significantly exceed accumulated snowfall through the winter. For the second
case, results are much closer to the SNODAS data and the results from the krig+S method (green lines in
Figures 6j-6l). There is no divergence because the effects of the previous days’ interpolation do not carry over
from day to day. Overall, there is slightly more SWE than the krig+S method predicts, and there is slightly
larger disagreement with the SNODAS data.

4. Discussion and Summary

This study demonstrates that there is a strong link of accumulated snowfall, with SWE,,,, and D, at SNOTEL
and COORP stations that is valuable for estimating SWE over large areas up until the time of peak of winter
snow accumulation (as shown by the strong correlations between snowfall and SWE,,.x in Figure 3c). We
recognize that the strength of this linkage at SNOTEL locations is largely due to the fact that they are located
high in the mountains where there is not a lot of midwinter melt. At lower elevations, where there is a lot of
midwinter melt (e.g., at the COOP stations), this linkage only applies for short periods between snowfall
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events and the maxima of snow accumulation that occurs immediately following one or a number of snowfall
events. Another potential limitation is that even though the SNOTEL and COOP data, taken together, repre-
sent both high-SWE (SNOTEL) and low-SWE (COOP) environments, there are still many areas that are not
characterized by these data sets. For example, across the western ConUS, there are not many COOP stations
at higher elevations in areas where there are no SNOTEL stations.

We have shown that fewer “known” SNOTEL and COOP stations are required to represent SWEax and Dax
at unknown stations given knowledge of accumulated snowfall from the current or previous water years over
interpolation that is based on distance and elevation only (Figure 4). Among the four previous interpolation
methods based on distance and elevation, optimal interpolation (Ol) can generate the most realistic esti-
mates of SWE at validation points, likely because this method combines horizontal and vertical correlation
distances to adjust snow quantities. This linkage has implications for applications that involve upscaling from
point measurements to grid boxes (e.g., for gridded snow data estimation) and downscaling from grid boxes
to point measurements (e.g., for model evaluation). SWE,.x and Dy,ax are much more spatially consistent,
when normalized by accumulated snowfall (Figure 3), suggesting that the normalized quantities are more
scale independent than unnormalized quantities.

This method, modified to include a representation of snow ablation, is applied to produce gridded PRISM-
based estimates of snow data. Our method, using relatively simple interpolation of SWE normalized by net
snowfall with a limited number of stations, can produce gridded estimates of SWE which are consistent with
the widely used SNODAS estimates of SWE (which uses more complicated energy balance snow modeling
and much more information in the data assimilation) over large areas in the western ConUS. Our method also
ensures that the gridded representation of SWE remains consistent with the gridded representation of pre-
cipitation and ablation. The results shown in section 3.4 (allowing the interpolated residuals from previous
days influence the current day’s background field versus constructing the current day’s background field
from net snowfall) demonstrate that not honoring this constraint can result in unrealistic mismatches
between spatial patterns of precipitation and spatial snow variability.

It could be argued that the use of precipitation data in snow analysis is not new, as gridded precipitation
and other near-surface atmospheric data (solar and longwave radiation, temperature, wind, and humidity)
are widely used in land models to produce gridded SWE and snow depth data through the assimilation of
surface, airborne, and satellite measurements [e.g., Rodell et al., 2004]. Such gridded snow products are also
available through data assimilation from global analysis [e.g., Saha et al., 2014] and reanalysis [e.g.,
Rienecker et al., 2011]. Our evaluations of these products using in situ measurements based on the method
developed in this study and other methods will be reported in other papers. Suffice to say that many of
these gridded products, despite their assimilation of precipitation and other measurements, are still
deficient compared with in situ measurements, further demonstrating that the use of gridded precipitation
in these data assimilations is not the same as the use of snowfall data in our analysis of the in situ
point measurements.
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